
The Wonderful World of
Debconf

Matthew Palmer

mpalmer@debian.org

The Wonderful World of Debconf – p.1/27

Overview

Why use Debconf?

Debconf Concepts

Programming Interfaces

A Packaging Example

Debconf Host Configuration

Deep Hacking

The Wonderful World of Debconf – p.2/27

Overview

Why use Debconf?

Debconf Concepts

Programming Interfaces

A Packaging Example

Debconf Host Configuration

Deep Hacking

The Wonderful World of Debconf – p.2/27

Overview

Why use Debconf?

Debconf Concepts

Programming Interfaces

A Packaging Example

Debconf Host Configuration

Deep Hacking

The Wonderful World of Debconf – p.2/27

Overview

Why use Debconf?

Debconf Concepts

Programming Interfaces

A Packaging Example

Debconf Host Configuration

Deep Hacking

The Wonderful World of Debconf – p.2/27

Overview

Why use Debconf?

Debconf Concepts

Programming Interfaces

A Packaging Example

Debconf Host Configuration

Deep Hacking

The Wonderful World of Debconf – p.2/27

Overview

Why use Debconf?

Debconf Concepts

Programming Interfaces

A Packaging Example

Debconf Host Configuration

Deep Hacking

The Wonderful World of Debconf – p.2/27

The purpose of Debconf

A unified configuration interface

Easy means to store configuration data

Simple, front-end independent, config scripts

Fully supports localization

The Wonderful World of Debconf – p.3/27

The purpose of Debconf

A unified configuration interface

Easy means to store configuration data

Simple, front-end independent, config scripts

Fully supports localization

The Wonderful World of Debconf – p.3/27

The purpose of Debconf

A unified configuration interface

Easy means to store configuration data

Simple, front-end independent, config scripts

Fully supports localization

The Wonderful World of Debconf – p.3/27

The purpose of Debconf

A unified configuration interface

Easy means to store configuration data

Simple, front-end independent, config scripts

Fully supports localization

The Wonderful World of Debconf – p.3/27

Debconf Concepts

Structure

Questions

Data Storage

The Wonderful World of Debconf – p.4/27

Package Structure

Three things are needed for a Debconfed package - a
config script, a list of questions (called a Template), and
maintainer scripts (postinst, prerm, etc) which ask the
Debconf database for config information.
The Debhelper script dh installdebconf is useful for
installing the template and config script. We will discuss
the maintainer scripts later on.
Your package must Depend: on debconf (or Pre-Depend:
if you use it in a preinst script) and you must get the
version right for the capabilities you use in your scripts.

The Wonderful World of Debconf – p.5/27

Script Structure

The config script (and, to a lesser degree, the maintainer
scripts) are a middle layer between the user interface
and the config database. Calls to both the UI and
backend are abstracted, so you never, ever need to
worry whether the user is using a plaintext interface, or a
web browser, or whatever. Similarly, there is no need to
consider if the question data is coming from a text file or
an LDAP directory.
Config scripts merely ask questions of users and make
decisions for other questions based on the responses.

The Wonderful World of Debconf – p.6/27

Questions and Why They’re Cool

There is one fundamental datum in Debconf - the
question. The question identifier ties all the pertinent
information about the question together - what the
question is, it’s description, and it’s current value.
Everything else in the Debconf system is basically
centered around manipulating these questions in various
interesting fashions.
A question’s identifier is an entry in a hierarchical tree.
The ‘path’ to a question is separated by slashes, like a
Unix path. An example would be
foo/bar/myquestion.

The Wonderful World of Debconf – p.7/27

Data Storage

Question data (both the questions themselves and their
current answers) is stored in a database (or databases)
somewhere. The mechanics of these databases, and
how to select the format to use, is the topic of the final
parts of this talk. At this time, it is sufficient to say that
there is a generic mechanism for storing questions and
their answers, which is accessed via some debconf calls.
Typically the data will be accessed via the question’s
identifier (ie foo/bar/myquestion).

The Wonderful World of Debconf – p.8/27

Templates

These provide the question data, such as what sort of
answer we want, and what the question is about. For
example:
Template: foo/bar/myquestion

Type: string

Default: It’s beaut!

Description: What do you think of this talk?

I’d like people’s opinion of what they think of this talk. Is it

informative? Is there any point to it? and so on.

.

E-mail can be sent to mpalmer@debian.org after the talk, or see me

when I’m getting my butt kicked at pool.

The Wonderful World of Debconf – p.9/27

Debconf for the maintainer

Access to debconf is quite simple. It is, at it’s core, a
text-based pipe between a frontend and your script, and
a backend and your script. The two most commonly used
languages to write config scripts are Perl and Bourne
Shell. We’ll describe both interfaces, since they’re very
similar mechanically. I’ll always list the Bourne shell first,
for no good reason.

The Wonderful World of Debconf – p.10/27

Initialization

We must initialise the database before we do anything
with it.
. /usr/share/debconf/confmodule
db_version 2.0
db_capb backup

use Debconf::Client::ConfModule ’:all’;
use Debconf::Log ’:all’;
version(’2.0’);
capb(’backup’);

The Wonderful World of Debconf – p.11/27

Asking Questions

Since your questions have already been defined, asking
one is as simple as giving your question ID to Debconf
and saying “well, ask it already!”.
db_input high foo/bar/myquestion || true
db_go || true

input("high", "foo/bar/myquestion");
go();
This will ask the question if the user has requested to
see questions of this priority. Else it will skip it and save
the default value to the debconf database.

The Wonderful World of Debconf – p.12/27

Giving your question a title

Just put the following code before you actually ask the
question.
db_title "Is it good?"

title("Is it good?");

The Wonderful World of Debconf – p.13/27

Getting the Answers

Again, it’s just retrieving the answer based on the
question ID.
db_get foo/bar/myquestion
echo "The answer was $RET"

my @ret = get("foo/bar/myquestion");
print "The answer was $ret[1]\n";

The Wonderful World of Debconf – p.14/27

Putting it together

So, the complete ask/retrieve for a question might look
like this:

. /usr/share/debconf/confmodule
db_version 2.0
db_capb backup

db_input high foo/bar/myquestion || true
db_title "Is it good?"
db_go || true

db_get foo/bar/myquestion
echo "The answer was $RET"

The Wonderful World of Debconf – p.15/27

Going around again

One question remains - what if the user fluffed an answer
and wants to go back and re-answer a question? They
can always abort the config and start again, but that can
be a pain in long config scripts. Instead, we can just use
the ‘backup’ capability we set earlier.
A db go or go() call will return a numeric value of 30 if
the user selected to go back to the previous question.
There is no means of going back multiple questions in
one hit. It’s up to your script to work out what to do when
you go back.

The Wonderful World of Debconf – p.16/27

db_go
if [$RET == 30]; then
Do the going back thing
fi

my @ret = go();
if ($ret[0] == 30) {
Do the going back thing
}

The Wonderful World of Debconf – p.17/27

A means of going back

The next slide shows the core of a very simple and
straightforward backup-supporting state machine, in Perl.
The mechanics of this system are quite simple. If the
state subroutine returns the name of a state, we move to
that state. Else we take the previous state off the stack
and run that one again.
Every possible state should be represented by a
subroutine of the same name, which returns either the
name of the next state to be called, or undef if we’re to go
back.

The Wonderful World of Debconf – p.18/27

push(my @STATESTACK, "exit");

Replace with the name of the first state

my $STATE = "intro";

while ($STATE ne "exit") {

no strict ’refs’;

my $NEXTSTATE = &$STATE;

use strict;

if ($NEXTSTATE) {

push(@STATESTACK, $STATE);

} else {

$NEXTSTATE = pop(@STATESTACK);

}

$STATE=$NEXTSTATE;

}

The Wonderful World of Debconf – p.19/27

An example state

sub intro

{

title("PHPWiki Configuration");

input("low", "phpwiki/notes/introduction");

my @ret=go();

if ($ret[0] == 30) {

return undef;

} else {

return "docroot";

}

}

The Wonderful World of Debconf – p.20/27

Another example state

sub mailname

{

title("The system mailname");

input("critical", "shared/mail/mailname");

my @ret=go();

if ($ret[0] == 30) {

return undef;

} else {

@ret = get("shared/mail/mailname");

if (check_rfc1035($ret[1])) {

return "write_aliases";

} else {

return "rfc1035";

}

}

}

The Wonderful World of Debconf – p.21/27

sub rfc1035

{

input("critical", "exim/error/rfc1035");

go();

return undef;

}

sub check_rfc1035

{

my $rfc1035_label_re = ’[0-9A-Za-z]([-0-9A-Za-z]*[0-9A-Za-z])?’;

my $rfc1035_domain_re = "$rfc1035_label_re(\\.$rfc1035_label_re)*";

my $domain = shift;

return $domain =˜ m/ˆ$rfc1035_domain_re$/;

}

The Wonderful World of Debconf – p.22/27

A Packaging Example

I’m going to cheat a little and use a package of my own
as the example. There are lots of examples of debconf
usage - just look at any package which depends on
Debconf.

The Wonderful World of Debconf – p.23/27

Debconf for Admins

The default debconf setup stores all questions and
answers in a straightforward flat-file database
(/var/cache/debconf/config.dat and
templates.dat, for the curious). But debconf can do
all sorts of other funky things, like:

Store configuration and/or questions in other formats
(such as a directory tree, flat directory, or LDAP
directory).

“Stack” multiple databases on top of each other, so
data items across multiple databases can be
accessed as though they were all in one DB.

The Wonderful World of Debconf – p.24/27

Debconf for Admins

The default debconf setup stores all questions and
answers in a straightforward flat-file database
(/var/cache/debconf/config.dat and
templates.dat, for the curious). But debconf can do
all sorts of other funky things, like:

Store configuration and/or questions in other formats
(such as a directory tree, flat directory, or LDAP
directory).

“Stack” multiple databases on top of each other, so
data items across multiple databases can be
accessed as though they were all in one DB.

The Wonderful World of Debconf – p.24/27

Debconf for Admins

The default debconf setup stores all questions and
answers in a straightforward flat-file database
(/var/cache/debconf/config.dat and
templates.dat, for the curious). But debconf can do
all sorts of other funky things, like:

Store configuration and/or questions in other formats
(such as a directory tree, flat directory, or LDAP
directory).

“Stack” multiple databases on top of each other, so
data items across multiple databases can be
accessed as though they were all in one DB.

The Wonderful World of Debconf – p.24/27

Mark databases read-only, so config changes won’t
be saved.

Store questions and their answers in entirely different
places all together.

The Wonderful World of Debconf – p.25/27

Mark databases read-only, so config changes won’t
be saved.

Store questions and their answers in entirely different
places all together.

The Wonderful World of Debconf – p.25/27

Hack me Harder, baby

Adding new frontends and backends is really as simple
as writing a new perl module and sticking it in the right
place. Frontends (that is, user interfaces) can be added
into /usr/share/perl5/Debconf/FrontEnd, and
backends (data stores) can be added to
/usr/share/perl5/Debconf/DbDriver. I
recommend you submit your creation to Joey Hess
(Debconf maintainer) for inclusion in the main package.
One currently lacking feature is the ability to store data in
an SQL database.
The programmers’ documentation is pretty decent - but
only exists in the source package. Check it out from a
mirror near you.

The Wonderful World of Debconf – p.26/27

References

The Debconf Programmer’s Tutorial (in
debconf-doc)

Configuration Management (The Debconf Policy)

debconf.conf(5)

The Wonderful World of Debconf – p.27/27

	Overview
	The purpose of Debconf
	Debconf Concepts
	Package Structure
	Script Structure
	Questions and Why They're Cool
	Data Storage
	Templates
	Debconf for the maintainer
	Initialization
	Asking Questions
	Giving your question a title
	Getting the Answers
	Putting it together
	Going around again
	
	A means of going back
	
	An example state
	Another example state
	
	A Packaging Example
	Debconf for Admins
	
	Hack me Harder, baby
	References

